
DISCRETE SEMICONDUCTORS

DATA SHEET

PBSS5350D50 V low V_{CEsat} PNP transistor

Product specification Supersedes data of 2001 Jul 13 2001 Nov 13

50 V low V_{CEsat} PNP transistor

PBSS5350D

FEATURES

- Low collector-emitter saturation voltage
- · High current capability
- Improved device reliability due to reduced heat generation
- Replacement for SOT89/SOT223 standard packaged transistors due to enhanced performance.

APPLICATIONS

- · Supply line switching circuits
- · Battery management applications
- DC/DC convertor applications
- · Strobe flash units
- Heavy duty battery powered equipment (motor and lamp drivers).

DESCRIPTION

PNP low V_{CEsat} transistor in a SC-74 (SOT457) plastic package.

NPN complement: PBSS4350D.

MARKING

TYPE NUMBER	MARKING CODE		
PBSS5350D	53		

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	-50	V
I _C	collector current (DC)	-3	Α
I _{CM}	peak collector current	-5	Α
R _{CEsat}	equivalent on-resistance	<150	mΩ

PINNING

PIN	DESCRIPTION	
1	collector	
2	collector	
3	base	
4	emitter	
5	collector	
6	collector	

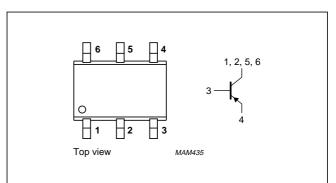


Fig.1 Simplified outline (SC-74; SOT457) and symbol.

50 V low V_{CEsat} PNP transistor

PBSS5350D

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	-60	V
V _{CEO}	collector-emitter voltage	open base	_	-50	V
V _{EBO}	emitter-base voltage	open collector	_	-6	V
I _C	collector current (DC)		_	-3	Α
I _{CM}	peak collector current		_	- 5	Α
I _{BM}	peak base current		_	-1	Α
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	600	mW
		T _{amb} ≤ 25 °C; note 2	_	750	mW
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Notes

- 1. Device mounted on a printed-circuit board, single sided copper, tinplated and mounting pad for collector 1 cm².
- 2. Device mounted on a printed-circuit board, single sided copper, tinplated and mounting pad for collector 6 cm².

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to	in free air; note 1	208	K/W
	ambient	in free air; note 2	160	K/W

Notes

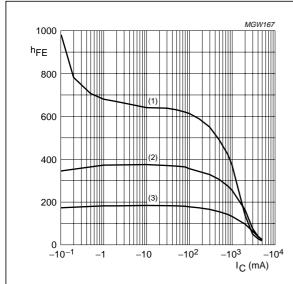
- 1. Device mounted on a printed-circuit board, single sided copper, tinplated and mounting pad for collector 1 cm².
- 2. Device mounted on a printed-circuit board, single sided copper, tinplated and mounting pad for collector 6 cm².

50 V low V_{CEsat} PNP transistor

PBSS5350D

CHARACTERISTICS

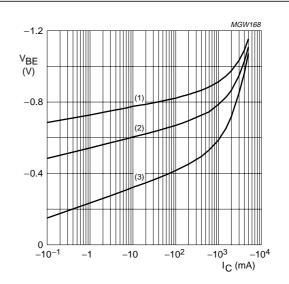
 T_{amb} = 25 °C unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector-base cut-off current	$V_{CB} = -50 \text{ V}; I_E = 0$	_	_	-100	nA
		$V_{CB} = -50 \text{ V}; I_E = 0; T_j = 150 ^{\circ}\text{C}$	_	_	-50	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0$	_	_	-100	nA
h _{FE}	DC current gain	$V_{CE} = -2 \text{ V}; I_{C} = -500 \text{ mA}$	200	_	_	
		$V_{CE} = -2 \text{ V}; I_{C} = -1 \text{ A}; \text{ note } 1$	200	_	_	
		$V_{CE} = -2 \text{ V}; I_{C} = -2 \text{ A}; \text{ note 1}$	100	_	_	
V _{CEsat}	collector-emitter saturation	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	_	_	-100	mV
	voltage	$I_C = -1 \text{ A}; I_B = -50 \text{ mA}$	-	_	-180	mV
		$I_C = -2 \text{ A}$; $I_B = -200 \text{ mA}$; note 1	_	_	-300	mV
R _{CEsat}	equivalent on-resistance	$I_C = -2 \text{ A}$; $I_B = -200 \text{ mA}$; note 1	_	120	<150	mΩ
V _{BEsat}	base-emitter saturation voltage	$I_C = -2 \text{ A}$; $I_B = -200 \text{ mA}$; note 1	_	-	-1.2	V
V _{BE}	base-emitter turn-on voltage	$V_{CE} = -2 \text{ V}; I_{C} = -1 \text{ A}; \text{ note } 1$	_	_	-1.1	V
f _T	transition frequency	$I_C = -100 \text{ mA}; V_{CE} = -5 \text{ V}; f = 100 \text{ MHz}$	100	_	_	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = I_e = 0; f = 1 \text{ MHz}$	_	_	40	pF

Note

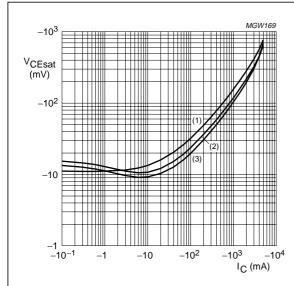
1. Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

50 V low V_{CEsat} PNP transistor


PBSS5350D

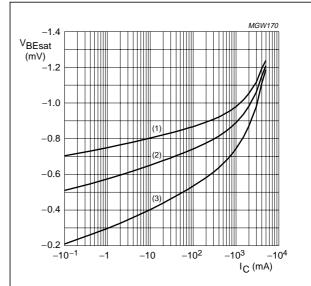
 $V_{CE} = -2 V$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) $T_{amb} = -55$ °C.


Fig.2 DC current gain as a function of collector current; typical values.

 $V_{CE} = -2 V$.

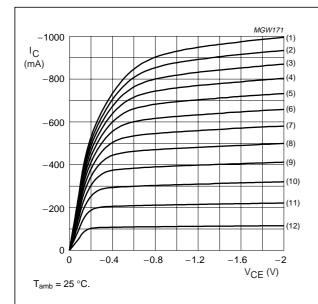
- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) $T_{amb} = 150 \, ^{\circ}C$.


Fig.3 Base-emitter voltage as a function of collector current; typical values.

 $I_{\rm C}/I_{\rm B} = 10.$

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig.4 Collector-emitter saturation voltage as a function of collector current; typical values.


 $I_{\rm C}/I_{\rm B}=10$.

- (1) $T_{amb} = -55 \, ^{\circ}C.$
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 150 \, ^{\circ}C$.

Fig.5 Base-emitter saturation voltage as a function of collector current; typical values.

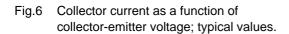
50 V low V_{CEsat} PNP transistor

PBSS5350D

(1) $I_B = -3.96 \text{ nA}.$

(5) $I_B = -2.64 \text{ nA}.$

A. (9) $I_B = -1.32 \text{ nA}$.


(2) $I_B = -3.63 \text{ nA}.$

(6) $I_B = -2.31 \text{ nA}.$ (7) $I_B = -1.98 \text{ nA}.$ (10) $I_B = -0.99 \text{ nA}$. (11) $I_B = -0.66 \text{ nA}$.

(3) $I_B = -3.30 \text{ nA}.$ (4) $I_B = -2.97 \text{ nA}.$

(8) $I_B = -1.65 \text{ nA}.$

(12) $I_B = -0.33 \text{ nA}.$

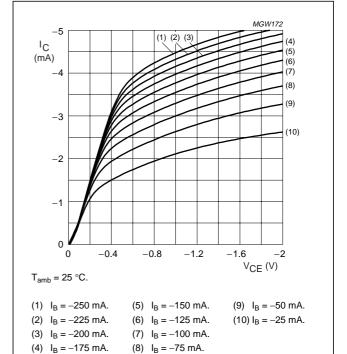
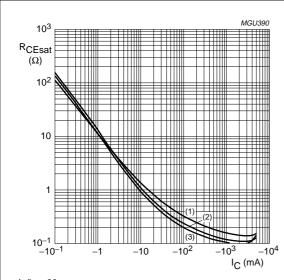
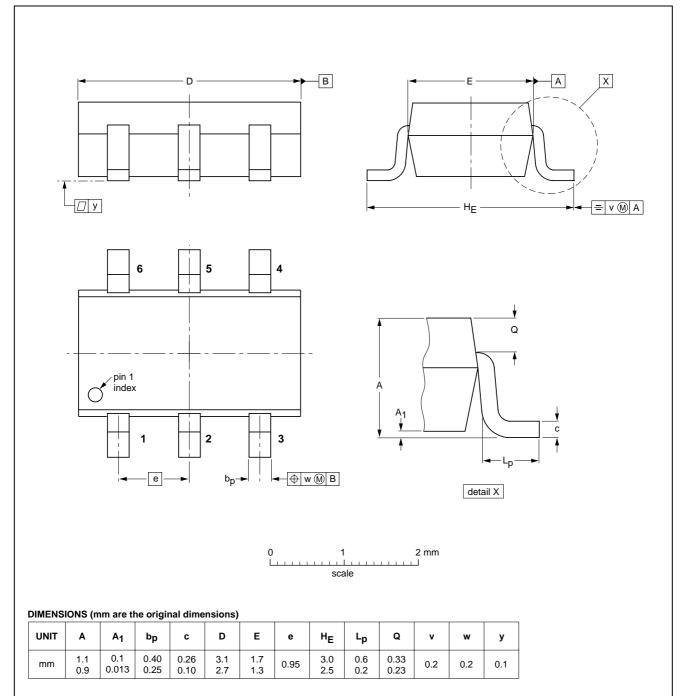



Fig.7 Collector current as a function of collector-emitter voltage; typical values.

 $I_{\rm C}/I_{\rm B} = 20.$

(1) $T_{amb} = 150 \,^{\circ}\text{C}$. (2) $T_{amb} = 25 \,^{\circ}\text{C}$. (3) $T_{amb} = -55 \,^{\circ}\text{C}$.

Fig.8 Collector-emitter equivalent on-resistance as a function of collector current; typical values.


50 V low V_{CEsat} PNP transistor

PBSS5350D

PACKAGE OUTLINE

Plastic surface mounted package; 6 leads

SOT457

REFERENCES

EIAJ

SC-74

JEDEC

EUROPEAN

PROJECTION

ISSUE DATE

97-02-28

01-05-04

2001 Nov 13 7

IEC

OUTLINE VERSION

SOT457

50 V low V_{CEsat} PNP transistor

PBSS5350D

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

50 V low V_{CEsat} PNP transistor

PBSS5350D

NOTES

50 V low V_{CEsat} PNP transistor

PBSS5350D

NOTES

50 V low V_{CEsat} PNP transistor

PBSS5350D

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2001

SCA73

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613514/04/pp12

Date of release: 2001 Nov 13

Document order number: 9397 750 08947

Let's make things better.

Philips Semiconductors

